NASA-CR-203342
VIS-AD DATA MANAGEMENT

William Hibbard!%2, Charles R. Dyer? and Brian Paul!

1Space Science and Engineering Center
2Department of Computer Sciences
University of Wisconsin - Madison

1. INTRODUCTION

The VIS-AD system was designed as an
algorithm development system, emabling scientists to
visualize the results of experiments with their data anslysis
algorithms. However, VIS-AD could also become a very
powerful data management system. VIS-AD provides a
programming language similar to C for expressing
scientific algorithms. The language provides a mechansim
for users to define complex data types for the data objects
of their algorithms. Data types can be defined for images,
multi-spectral images, image sequences, gridded data,
randomly located data, geometrical data such as boundary
lines, and virtually any other data structiures used in carth
science. Furthermore, VIS-AD manages all these data
types in a uniform way, and provides access to data
through its programming language. These features could
form the basis for a new way to manage cavironmental
data,
2 DATA TYPES
VIS-AD enables its users to define data types for
the data objects of algorithms, as follows. Define T as the
set of types for the data objects in an algorithm. Kt is
common for a programming language to define a set of
primitive types (e.g. int, real), and to define a set.of type
constructors for building the types in T from the primitive
types. We modify this by interposing a finite set S of scalar
types between T and the primitive types. We define the
primitive types as:

PRIM={int, string, real, real2d, real3d)

where real2d and real3d are pairs and triples of real
numbers. The user defines a finite set S of scalar types,
and binds them to the primitive types by a function
P:S —» PRIM . AnmﬁmmToftypucanbcdeﬁned
from S by:

ScT
(fori=1,..,ng4 eN)=(1,....1,) €T
(seSAtel=>(s>1)eT

where (#,...,2,) is a tuple type constructor with element
types £,, and (s—) is an array type constructor with value
typeundmdextype:

158

The important consequence of the use of scalar
types is that every primitive value, including an array index
value, occurring in a data object of type t 'RT , has a scalar
type in S. The names of primitive values are a form of
ancillary information, and the scalar types are a way of
requiring the user to supply this ancillary information with
data objects. The VIS-AD system uses this ancillary
information to intelligently generate graphica! depictions of
data objects, but it may also be useful for supporting other
intelligent data management functions.

3. EXAMPLES OF DATA TYPES

The VIS-AD system provides a simple syntax for
data type definitions. We offer examples from an algorithm
for discriminating clouds in GOES images. The following
are examples of how the user defines scalar types in S and
the function P-S — PRIM;

type brightness = real;

type temperature = real;
type earth_location = real2d;
type image_region = int;
type time = real;

type count = int;

Here brightness and temperature are the visible and
infrared radiance values of pixels in satellite images,
earth_location is a pair of values for the latitude and
longitude of pixel locations, image_region is an index into
rectangular sub-images, fime is an index for image
sequences, and count is used for histograms,

The following are examples of how the user
defines complex types in T (the keyword structure is used
to indicate the tuple constructor):

type visir_image =
array [earth_location] of
structure {
.visir_ir = temperature;
.visir_vis = brightness;

H
type visir_set = array {image region) of visir_image;
type visir_set_sequence = array {time] of visir_set;

type histogram = array [temperature] of count;

type histogram_set =
array [image_region] of
structure {
-hist_location = earth_location;
.hist_histogram = histogram;
IH

Data objects of type visir_image are two-dimensional
images of temperature and brightness values, indexed by
earth_location values. The cloud discrimination algorithm
partitions images into regions, and a data object of type
visir se¢t is an image with partitions indexed by
image_region values. A data object of type
visir_set_sequence is a ime sequence of partitioned images.
A histogram data object attaches a frequency count to a set
of temperature values, and a histogram_set object contains
a histogram and an earth_location value for each
image_region value.

Type definitions can be used to attach ancillary
values to data objects. For cxample, the following type
defintions provide a way to attach a seasor name, a satellite
subpoint, and a table of errors as a function of
temperature, to each image in a time sequence:

type sensor_name = string;
type rms_error = real;

type visir_sequence =
array [time] of
structure {
.VS_SCNsSOr = Sensor_name;
.vs_sub_point = carth_location;
.vs_error = array [temperature] of rms_esror;
.vs_visir = visir_image;

|5
DATA OBJECTS

Define D(f) as the set of data objects of a type
1 €T, sometimes called the "domain” of a data type. The
domains of scalar types are determined from the domains
of their primitive types, by D(s)=D(P(s)). The domain of
the primitive type inf is the union of a set of finite sub-
domains, each an interval of integers, as follows:

Dint, ;)= (ki Sk S J}

D(int) = {missing} w{J; ¢ jD(int‘.' l.)

where i, j and k are integers and the missing value indicates
the lack of information (the use of special "missing data®
codes is common in remote sensing algorithms). The
domain of the primitive type rea!l is the umion of a set of
finite sub-domains, each a set of half-open intervals, as
follows:

Direal,, ,)= U/ (H/2).S(k+D /2N Sk S)

D(real) = {missing} WUy ¢ ;14U; < j.n 2 0D(real, , |)

where i, j, k and n are integers and FId is a set of
increasing cootinuous bijections from R (the set of real
numbers) to R; the functions in FId provide nop-uniform
sampling of real values. The domains D(real2d),
D(real3d) and D(string) are similarly defined as the unions
of finite sub-domains.

D((s 1)) is defined as the union of a set of
function spaces, rather than as the single space of functions
from D(s) to D(s), as follows:

D((s = 1)) = {missing} WU g, (X3,) = D(1))

where subs ranges over the finite sub-domains of the scalar
domain D(s), and (D(3,4,)—> D(f)) denotes the sct of all
ﬁmﬁomﬁm&eaﬂb{:‘)mﬁeﬁb(r). Bvery array
object in D{(s—>1)) cootains a finite set of values from
D(®), indexed by values from one of the finite sub-domains

of D(s).
The domains of tuple types are defined by:

D((fy,--- 1)) = {missing} v D(t))x...xDX(t,)

Bach domain D{f) has a lattice structure, with the
missing value as its least element. The half-open intervals
in D(real) are approximations to values in R and are
mduedbydieinvaleofouincludon;dmis,inlhemﬁee
structure, an interval is "less” than its sub-intervals.
Values in D(real2d) and D(real3d) form similar lattices and
are approximations to values in R? and R3. The lattice
structure can be extended to array and tuple types.

The lattice structure of domains, and the
definition of array domains as umions of function spaces,
provide a formal basis for interpreting array data objects
whose indices have primitive types real, real2d os realid
nﬁnitamlinpofﬁmeﬁomwerl,l’orl’. For
cxample, a satellitc image is a finite sampling of a
continuons radisnce fild. The VIS-AD programming
language allows arrays to be indexed by real, real2d and
real3d values. Navigstion (earth alignment) and calibration
(radiance pormalization) for satellite images can be
implemented by appropristely defined sub-domains of
D(real2d) and D(real), 50 that raw satellite images can be
accessed directly in terms of latitude, longitude and

Physical varisbles range over infinite sets of
values, such as the set R of real oumbers. However,
values must be stored in computers using a finite number of
bits, and thus are constrained to range over finite sets of
values, such as the set of 32-bit floating point numbers.
These are finite samplings of infinite value sets. In most
programming languages, the finite samplings for variables

159

are determined by the type of a variable (for example, real
or double in C). In e VIS-AD programming language,
however, the finite samplings are specified as past of the
data object. A scalar domain D(s) is a union of a set of
finite sub-domains, and each sub-domain is a different finite
sampling of the infinite set that is the completion of the
lattice D(s) (for example, R is the completion of D(real)).

The pixel locations in a satellite image form a
finite sampling of an infinite set of points on the earth. Itis
usual to store image data as arrays. Since arrays indices
are identified as scalar types in VIS-AD, and since the
finite sampling of the array index is part of an array data
object, the navigation information for the satellite image is
part of the image data object. Similarly the 256 radiance
values of an 8-bit pixel are a finite sampling of
temperatures, so the calibration information for a satellite
image is also part of the image data object. Thbus the
domains for VIS-AD data objects provide a uniform way to
manage these ancillary information as part of the data
objects themselves.

One simple consequence of the VIS-AD data
domain structure is support for variable length arrays.
That is, the sizes of arrays are not fixed in their
declarations, but may vary. Thus arrays can be used to
model list structures. For example, 2 map boundary can be
defined with the following data types:

type list_index = int;

type map_boundary =
array [list_index) of earth_location;

A map_boundary data object is a variable length array of
earth_location points. Thus, although VIS-AD does not
explicitly support linked data structures, it can easily model
simple list structures.

The VIS-AD mupport for missing data is
motivated by its use for managing remote sensing data.
However, missing data can also be used as a data
structuring tool. For example, a data object image_area of
type visir_image can be used to represent an arbitrarily
shaped image region simple by setting

image_arealearth_location] = missing;

for all values of earth_location not in the image region.

Thus navigation, calibration and missing data
indicators can be buik into the values of data objects,
variable length arrays can be used to model list structures,
and missing data can be used as a data structuring tool.
Combined with the flexibility of type definitions illustrated
in Section 4, VIS-AD provides very powerful tools for
managing earth science data.

5. ACCESS TO DATA OBJECTS

The VIS-AD programming language provides a
transparent way to access the finite sampling information of

160

data objects. For example, if goes is an object of type
visir_image and loc is an object of type earth_location,
then VIS-AD evaluates the expression goesfloc] as:

if loc is outside the range of the finite sampling of index
values of goes, then evaluate goesfloc] = missing

otherwise, resample loc to the actual index value loc’ of
the goes array closcst to loc, and evaluate '

goes{loc] = goesfloc’]

Thus array accesses may evaluate to missing.
VIS-AD provides a transparent way to manage operations
on missing values. If OP is a binary arithmetical operator
(+, -, * or /) and vall and val2 are expressions with scalar
values, then VIS-AD evaluates the expression vall OP val2
to missing:

if vall = missing or
if val2 = missing ot
ifOP==/and w2 == 0

These evaluation rules make it easy to combine
data from different sources, with out the need to explicidy
remap one sct of data to the projection of the other. For
example, let goes_west and goes_east be two data objects
of type visir_image, from the west and cast GOES satellites
respectively. The pixels in these images are not co-located,
but the difference of these images can be calculated quite
simply by:

foreach (loc in goes_west) {
}xoe-_westlloc} = goea_westlloc] - goes_eastfloc;

where loc is a data object of type earth_location. Inside
the foreach loop, the value of loc varies over all the array
index values of the array goes west. The values of
goes_east are resampled to the index locations of
goes_west, and the difference of these image arrays
evaluates to missing wherever they do not overiap.

VIS-AD also provides a simple means to access
sub-objects of data objects. For example, if hset is a data
object of type histogram_set and if reg is s data object of
type image_region, thea the expression
hsef{reg) Kist_histogram evaluates to & data object of type
histogram.

VIS-AD includes functions for converting objects
betweea their internal storage formats and external formats
suitable for storage in disk files and for transmission to
other processes or across computer networks. Both the
internal and external object formats use memory efficiently.
Numerical values are stored as scaled integers rather than
as floating point mumbers, and use 8-bit or 16-bit integers
wherever possible. These formats minimize use of disk
storage and communications bandwidth. The absence of
any floating point values eliminates the need for converting

data objects between machine architectures (except for
possible problems with big-endian versus small-endian
machines, and machines that use non-ascii text).

6. HIGH-LEVEL FUNCTIONS

VIS-AD supports calls to three kinds of functions.
Internal functions are implemented in the VIS-AD
programming language, and users writing VIS-AD
programs are free to define as many internal functions as
they need. Intrinsic functions are implemented as part of
the VIS-AD system and should be viewed by users as part
of the language (like the MAX function in FORTRAN).
External functions are implemented in C or FORTRAN,
and give users a way to link their existing programs to
VIS-AD.

The VIS-AD system includes a variety of intrinsic
functions for transferring McIDAS data structures (for
example, image and grid files) into VIS-AD data objects,
and for analyzing data. We are constantly adding new
intrinsic functions to the system. Analysis functions are
currently defined for:

e Remapping two- and three-dimensional images and
grids.

e Low-pass filtering one-, two- and three-dimensional

data.

Calculating histograms of data arrays.

Finding clusters in histograms.

Finding percentiles of histograms.

Selecting regions of arrays with values in selected

ranges.

e Boolean operations on regions of arrays.

VIS-AD external functions, written by the user in
C or FORTRAN, provide a way for users to access data
sets stored in any format, and a way for users to link to
their existing analysis functions.

1. CONCLUSION

The purpose of this paper is to point out that
VIS-AD contains many powerful functions for managing
earth science data. These include:

® An easy way for users to definc new data structures,
such as images, multi-spectral images, image
sequences, histograms, spatial regions, region
boundaries, ctc. These flexible data types also let
users define a varicty of ancillary data as part of their
data types.

® An easy way to access data objects and their sub-
components a programming language, and an casy
way to write functions for analyzing those data.

¢ Uniform mechanisms for management of all dats
structures.

® A special missing data indicator that can be used for
the value of any data object or sub-object.

. A uniform mechanism for managing finite samplings
of continuous quantities, as for example, the way that
satellite navigation and calibration finitely sample
carth locations and temperatures.

e A easy way for users to write C or FORTRAN
programs for converting data between VIS-AD data
objects and other systems.

e A mechanism for storing data objects in disk files or
for transmitting data objects across networks.

Thus, the most difficult functions for managing
complex earth science data already exist in VIS-AD. In
order for VIS-AD to function as a true data management
system, it needs to include functions for:

¢ Immediate mode commands. Currently, all functions
are called by a running VIS-AD program. Users need
a way to invoke functions ooe at a time by typing
commands.

e Managing data objects in disk files. There should be
files and memory, for listing objects in disk files, and
possibly for retrieving sub-objects of objects stored in
disk files (since dsta objects may be large).

After these functions are implemented, VIS-AD
will be a powerful earth science data manager, in addition
to its original role for visualizing the behavior of scientific
algorithms.

8. REFERENCES

Hibbard, W., C. Dyer and B. Paul, 1992a; A development
environment for data analysis algorithms. Preprints, Conf.
Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology. Atanta,
American Meteorology Society. 101-107.

Hibbard, W., C. Dyer, and B. Paul, 1992b; Display of
Accepted for Visualization 92, IEEE.

161

